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THE STAPHYLOCOCCUS PSEUDINTERMEDIUS ADHESIN SPSD CONTAINS 
A CENTRAL FIBRONECTIN-BINDING DOMAIN 

 
 
 
 

Andrea S. Bordt, B.S., M.P.H. 
 
 

Supervisory Professor:  Magnus Höök, Ph.D. 
 
 

      Staphylococcus pseudintermedius is a Gram-positive bacterium significant 

because of its ability to cause costly and difficult to treat veterinary infections 

worldwide. It exhibits several similarities to Staphylococcus aureus, however, very 

little is known about its surface adhesins. Surface adhesins in S. aureus are 

significant contributors to pathogenesis. S. pseudintermedius encodes the surface 

protein SpsD, which contains characteristics of the microbial surface components 

recognizing adhesive matrix molecules family and confers attachment of the 

heterologous host Lactococcus lactis to fibronectin. This work has identified a 

centrally-located fibronectin binding domain in SpsD which binds the 30 kDa N-

terminal domain of fibronectin with high affinity. The data indicate that a tandem β-

zipper mechanism of binding may be taking place, and warrants further study into 

SpsD’s role in overall colonization of the host.  
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Staphylococcus pseudintermedius 

      Staphylococcus pseudintermedius is a Gram-positive bacterium known for 

producing costly veterinary infections worldwide, particularly in dogs. Infections 

commonly include surgical wound infections and pyoderma in atopic dogs. Although 

comparatively rare, when humans do become infected the resulting disease is 

generally severe (1). Until 2007, it was believed that the microorganism responsible 

for many of these infections was Staphylococcus intermedius (2, 3). S. 

pseudintermedius was first described as a unique species by Devriese and others 

(4). Veterinary bacterial testing is complicated by the presence of the S. aureus-like 

veterinary pathogens Staphylococcus intermedius (5) and Staphylococcus hyicus 

(4, 6), among others. For this reason, additional diagnostic tests must be performed 

to adequately determine bacterial identifications (4). Isolates from four different host 

species (lung tissue from a cat in 1999, skin lesion from a horse in 1999, ear lesion 

from a dog in 2001, and liver tissue from a parrot in 2003) demonstrated similar 

electrophoretic patterns using tRNA intergenic length polymorphism analysis (4). 

Definitive evidence of the presence of a distinct new species came from 16S rRNA 

sequencing, which showed 100% similarity between the four strains (4). This new 

strain was classified as a member of the S. intermedius group as defined by 

Takahashi et al. (1999) and named S. pseudintermedius – false intermedius (4).  

 

      S. pseudintermedius is a commensal organism of healthy dogs (1, 7). It 

colonizes the nose and perianal area of healthy dogs and has been found on 

cellular phones in a veterinary clinic (8), indicating its ability to contaminate the 
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environment of colonized/infected animals. Importantly, antibiotic-resistant strains 

are increasingly isolated worldwide (1).  

 

Surface adhesins of S. pseudintermedius  

      It is common for pathogenic bacteria to express components on their cell 

surface that aid in initial adherence and colonization through interactions with host 

tissues. S. pseudintermedius is no exception. Surface adhesins often contribute to 

bacterial pathogenesis and have been sought after for vaccine components or 

therapeutic targets. S. pseudintermedius is able to adhere to dog corneocytes – 

terminally-differentiated keratinocytes, which have lost their nuclei (9). S. 

pseudintermedius is also able to adhere to several host extracellular matrix (ECM) 

components (7, 10, 11). ECM components are often targeted by microbial surface 

components recognizing adhesive matrix molecules (MSCRAMMs) and are of 

particular importance in opportunistic pathogens. Studying MSCRAMM:ECM 

interactions indicates that prevention of colonization can lead to decreased infection 

rates. The information gained from MSCRAMM:ECM interactions has lead to the 

design of small molecule inhibitors and vaccines to target these interactions.  

 

      S. pseudintermedius strain ED99 is predicted to encode three surface proteins 

with the hallmark characteristics of MSCRAMMs: N-terminal signal sequence, A 

domain containing repeated IgG-like folded domains, B repeats, and LPXTG 

anchoring motif (12, 13). The N-terminal signal sequence is necessary for directing 

the immature protein to the Sec secretory pathway (14, 15) and the LPXTG motif 
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followed by a hydrophobic domain and a largely positive tail (14, 16) are used for 

anchoring. The LPXTG motif is used by the enzyme Sortase to covalently anchor 

the mature protein to the cell wall peptidoglycan in S. aureus (13). The A-domain 

and B repeats of many S. aureus MSCRAMMs are involved in colonization and/or 

pathogenesis through interactions with host ligands. For instance, the IgG-like folds 

of the A domain of SdrG interact with the host protein fibrinogen using a dock-lock-

latch mechanism (17), while the B repeats of FnBPA are known to bind the host 

protein fibronectin via the extended tandem beta-zipper mechanism (18), which in 

turn increases S. aureus infection potential. 

 

      Currently, there is a lack of knowledge about the structure and function of S. 

pseudintermedius adhesins. Based on sequence analysis of the available strains, S. 

pseudintermedius encodes three putative MSCRAMMs:  SpsD, SpsL, and SpsO 

(7). These are characterized as potential MSCRAMMs based on their genetic 

structure, which predicts that they contain the hallmarks of MSCRAMMs. Like some 

previously characterized MSCRAMMs, strain ED99 SpsD and SpsO confer 

adherence to canine corneocytes when heterologously expressed on the surface of 

Lactotoccus lactis subspecies cremoris strain MG1363 (11). Additionally, SpsD and 

SpsL expressed on the surface of L. lactis confer attachment to fibrinogen from 

multiple species, bovine fibronectin, and mouse cytokeratin 10 (12). SpsD and 

SpsL-specific IgGs have been detected in sera from dogs with bacterial pyoderma 

(12), suggesting that these proteins are expressed during S. pseudintermedius 
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infection. Taken together, these data suggest an important role for these putative 

MSCRAMMs in S. pseudintermedius pathogenesis and warrant their further study.  

 

Fibronectin 

      The host glycoprotein fibronectin is a dimer of two 250 kDa monomers and is 

present in two major forms:  a soluble protein found in circulation, and an insoluble 

protein found in the extracellular matrix (19). Fibronectin is a binding partner for 

both host and microbial proteins (19). Its domain organization is depicted in Figure 1 

(19). The 30 kDa N-terminal domain (NTD) is comprised of the first five F1 modules 

(1F1-5F1) and is a common target for bacterial adhesins, in addition to its ability to 

bind the host proteins heparin and fibrin (19). The 120 kDa cell binding domain 

(CBD) is also a target for bacterial adhesins, including Streptococcus pyogenes 

Protein H and Porphyromonas gingivalis Fim, and plays an important role in host 

immunity (19) (20) (21).  

 

Fibronectin-targeting bacterial surface proteins 

      A number of bacterial proteins target fibronectin, with consequences including 

bacterial attachment to host matrices and cells, invasion of host cells via a 

fibronectin bridge, and various disruptions of the host immune responses (12, 22). 

These bacterial proteins target various fibronectin domains and even specific 

modules. Relevant to the current topic, adhesins from S. aureus, Streptococcus 

pyogenes, and Streptococcus dysgalactaie interact with fibronectin primarily at the 
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30 kDa NTD (Table 1, 19). These facts make it clear that binding to fibronectin is an 

important strategy employed by bacterial pathogens and warrants further study. 

 

Table 1. Several bacterial adhesins target the fibronectin NTD. 
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Figure 1. Domain organization of fibronectin. Fibronectin is a modular protein, 
composed of three types of modules (Type I, orange; Type II, blue; Type III, green). 
Fibronectin can be proteolytically cleaved into several fragments:  an N-terminal 70 
kDa fragment containing both the 30 kDa and 45 kDa N-terminal domain (NTD) and 
gelatin-binding domain (GBD), respectively, a 120 kDa proteolytic fragment 
containing the cell-binding domain (CBD) and a 40 kDa heparin-binding domain 
(Hep-2). Schematic adapted from (19), Figure 1, with permission, © 2010 
Federation of European Microbiological Societies. Published by Blackwell 
Publishing Ltd. All rights reserved. 
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Tandem β-zipper binding mechanism 

      Several microbial surface proteins target the 30 kDa NTD region of fibronectin. 

For example, S. pyogenes, and S. aureus surfaces present the proteins SfbI and 

FnBPA, respectively. These proteins contain loosely conserved sequences which 

have been experimentally determined to bind the NTD (18). The degree of 

conservation among bacterial NTD-targeting sequences varies. The mechanism of 

binding utilized by these proteins is the extended tandem β-zipper, in which the 

intrinsically-disordered fibronectin-binding portion of the bacterial protein forms an 

anti-parallel β-strand along the E strand of the fibronectin F1 module triple-stranded 

β-sheet (18, 23). FnBPA repeats are approximately 40 amino acids in length and 

interact with the fibronectin F1 modules of the NTD. This binding mechanism is 

known as the tandem β-zipper mechanism (18). 

 

      The current impetus for research into S. pseudintermedius is vaccine 

development based on information gleaned from studying other bacterial surface 

proteins. The goal of the current research is to determine the regions within SpsD 

and fibronectin that mediate their interaction. 
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Figure 2. Tandem β-zipper binding mechanism. A. Ribbon diagram of fibronectin 
modules F1 modules (blue) and the S. dysgalactiae protein B3 (red) forming an 
anti-parallel bond with the E strands of the F1 modules. B. Fibronectin modules 1F1-
5F1 (blue) drawn with fibronectin-binding protein (grey). β-strands for which three-
dimensional data is available are shown in red. Bacterial protein sequences 
experimentally demonstrated to bind the fibronectin NTD and binding Kd values are 
shown. Reprinted by permission from Macmillan Publishers Ltd:  [NATURE] 
(Schwarz-Linek and others (18), Figures 2 and 3), copyright (2003). 
 

 

 

 

 

 

  



www.manaraa.com

 10 

 
 

 

 

 

Chapter 2:  Methods and Results 

  



www.manaraa.com

 11 

METHODS 

Bioinformatics 

      The S. pseudintermedius strain ED99 signal sequence boundary was predicted 

by the signal sequence predictor SignalP 4.0 server (24). Protein secondary 

structure predictions were computed by the PHYRE (25), and alignments were 

made using the ClustalW2 server (26). National Library of Medicine National Center 

for Biotechnology Information BLAST and GenBank services were also utilized (27). 

 

Cloning  

      Traditional cloning methods were used to make the constructs used in this 

study. For construction of pABspsD1585-2100, the S. pseudintermedius ED99 spsD 

sequence inserted into pOri23 was used as template (generous gift from Dr. Ross 

Fitzgerald). PCR conditions for generating spsD1585-2100 were as follows:  2 µM 

forward primer – 5’-gcaggatccggcaacctggaactctagaggagaca-3’, 2 µM reverse 

primer – 5’-! gcagaattcctatttcggcttctcaacgat-3’, 1X Phusion® HF Buffer (New 

England Biolabs, Inc., #B0518S), 0.2 µM each dNTP (New England Biolabs, Inc., 

#N0447S), 34.25 ng template DNA, and 0.01 U Phusion® High-Fidelity DNA 

Polymerase (New England Biolabs, Inc., #M0530S) in 50 µL water. Cycling 

conditions were as follows:  initial denaturation at 98 °C for 30 sec; 40 cycles of 

denaturation at 98 °C for 30 sec, extension at 59 °C for 30 sec, and annealing at 72 

°C for 30 sec; final extension at 70 °C for 10 min, and hold at 25 °C. PCR product 

was cleaned using the DNA Clean & ConcentratorTM-5 kit (Zymo Research, 

#D4004), and run on a 1% agarose gel in 1X TAE for size confirmation. Insert was 
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double digested overnight at 37 °C with 1X NEBuffer 4 (New England Biolabs, Inc., 

#B7004S), 1X BSA, 1 U each BamHI-HF® and EcoRI (New England Biolabs, Inc., 

#R3136S and #R0101S, respectively), and 9 µL spsD1585-2100 in 20 µL of water and 

again cleaned using the DNA Clean & ConcentratorTM-5 kit. Concurrently, pGEX-

5X-1 (GE Healthcare, code #28-9545-53) was double-digested, cleaned, and 

dephosphorylated using Antarctic Phosphatase (New England Biolabs, Inc., 

#M0289S) as directed. The ligation reaction was carried out for 4 h at room 

temperature with the following:  1X Rapid Ligation Buffer (Promega, #C6711), 0.5 

µL vector, 1.5 µL insert, 1 µL T4 DNA Ligase (New England Biolabs, Inc., 

#M0202S). Plasmids were transformed into competent E. coli TG-1 cells at 42 °C 

for 45 sec and plated onto Luria Burtani (Sigma-Aldrich) agar with 0.1 mg/mL 

ampicillin (USB) at 37 °C overnight. After plasmid extraction using the QIAprep Spin 

Miniprep Kit (Qiagen, #27106), correct sequence was confirmed by GENEWIZ 

(South Plainfield, NJ). pABspsD1585-1845 and pABspsD1846-2100 were 

generated in much the same way. Primers for generating spsD1585-1845 were:  

forward – 5’-gcaggatccggcaacctggaactctagaggagaca-3’ and reverse – 5’-

gaattcctacgtatcttcgtcgtattcaacgacatca-3’. Primers for generating spsD1846-2100 were:  

forward – 5’-ggatccacaactggcatgttaacaggtgc-3’ and reverse – 5’-

gcagaattcctatttcggcttctcaacgat-3’. PCR reactions were carried out using Phusion® 

High-Fidelity DNA Polymerase following manufacturers’ instructions. spsD1585-1846 

was sequentially digested with BamHI and NotI (New England Biolabs, Inc., 

#R0189S) for 1 h at 37 °C each, cleaned, and ligated into dephosphorylated, 

BamHI and NotI-digested pGEX-5X-1 vector. spsD1846-2100 was sequentially 
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digested with BamHI and EcoRI for 1 h at 37 °C each, cleaned, and ligated into 

dephosphorylated, BamHI and EcoRI-digested pGEX-4T-1 (GE Healthcare, code 

#28-9545-49) vector. Plasmids were transformed into competent XL-1 Blue cells 

and plated as above. Correct sequences were confirmed by GENEWIZ. Clones with 

correct sequences were made into frozen stocks by the addition of sterile glycerol 

and stored at -80 °C.  

 

Protein purification. 

      The recombinant FnBD (GST-SpsD529-700) was purified over glutathione beads, 

following the manufacturer’s instructions (GE Healthcare). Briefly, cells from freezer 

stocks were inoculated into Luria Bertani Broth + 0.1 mg/mL ampicillin and grown at 

37°C with shaking overnight. These primary cultures were then inoculated into 1L of 

LB + 0.1 mg/mL ampicillin at a dilution of 1:20, incubated an additional 3h, then 

transferred to 18°C, and induced overnight with isopropylthio-β-galactoside. Cells 

were pelleted, resuspended in PBS and frozen. To purify, cells were mechanically 

lysed and proteins were purified over glutathione beads. Eluted proteins were 

dialyzed against PBS and quantified spectroscopically. 

 

ELISA assay 

      For completion of Enzyme-linked immunosorbent assay-like assay, wells of 

ImmulonTM 4HBX plates were coated with 1ug/well human full-length fibronectin 

(F0895, Sigma), N-terminal 70kDa domain (F0287, Sigma), 30kDa N-terminal 

domain (F9911, Sigma), 40kDa gelatin-binding domain (F0162, Sigma), 120kDa 
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cell-binding domain (F1904, Millipore), Hep-2 domain (F1903, Millipore), or BSA V 

(Sigma-Aldrich, #A9647-100g), sealed, overnight at 4°C. Plates were washed with 

PBS, incubated with SpsD constructs or GST-FnBPBN2N3 for 1h at room 

temperature, washed, and GST fusion proteins were detected using an HRP-

conjugated anti-GST secondary antibody.  

 

Bacterial attachment assay  

      Human fibronectin (see above) was coated in a concentration of 1 ug/100uL 

onto Immulon 4HBX plates overnight at 4 °C in PBS. Plates were washed, blocked 

in 5% BSA in PBS for 1 h at 37 °C, washed, and bacteria (O.D.600 = 1) were 

introduced. Following a 1 h incubation at room temperature, unbound bacteria were 

washed away, remaining cells were fixed with 4% formaldehyde-buffered solution 

(Formalde-Fresh, Fisher, #SF93-4) for 1 h at room temperature, stained with 0.5% 

crystal violet for 5 min at room temperature, and stain was eluted with 5% acetic 

acid in water for 10 min at room temperature. Absorbance was read at 590nm on a 

SpectramaxM5 reader.  

 

Inhibition assay 

      Inhibition assays were carried out similarly to crystal violet attachment assays, 

except for a second binding step. For the SpsD FnBD inhibition assay, recombinant 

FnBD was added to immobilized full-length fibronectin at increasing concentrations 

for 30 min at room temperature, then L. lactis expressing full-length SpsD (O.D.600 = 

1 final concentration) was added and incubated for an additional 30 min before 
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washing. For the fibronectin NTD inhibition assay, L. lactis expressing SpsD was 

pre-incubated for 30 min at room temperature with NTD before addition to the 

immobilized full-length fibronectin. Assays were then continued in the same manner 

as the bacterial attachment assays, described above. 

 

Surface plasmon resonance.  

      Surface plasmon resonance analyses were carried out using a Biacore 3000 

(GE Healthcare/Biacore) at 25 °C following the general methods described by Ross 

and others (28). Briefly, recombinant FnBD was captured on the chip using an anti-

GST monoclonal antibody and fibronectin was flowed over the chip at various serial 

dilutions. For analysis, baseline was subtracted and kinetics parameters calculated 

as described (28). 

 

RESULTS 

      Bannoehr and others (12) first reported the existence of several putative surface 

anchored proteins of S. pseudintermedius strain ED99. Three of these (SpsD, SpsL, 

and SpsO) were predicted to be MSCRAMMs. SpsD heterologously expressed on 

the surface of L. lactis conferred attachment to immobilized fibronectin and other 

host extracellular matrix components (12). This finding is notable, because 

attachment is a precursor to colonization and infection. Since it is known that S. 

pseudintermedius can colonize and infect its hosts, there is a need to understand 

the mechanism of interaction for vaccine and therapeutic development.   
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      To determine the region within fibronectin targeted by SpsD, an attachment 

assay was used. SpsD was heterologously expressed on the surface of L. lactis and 

its ability to confer attachment to a panel of fibronectin proteolytic fragments was 

assessed (Figure 3). The results demonstrate that L. lactis expressing SpsD 

adhered to full-length fibronectin, the N-terminal 70 kDa fragment, and the 30 kDa 

N-terminal domain (NTD). Each of these contains the 30 kDa NTD, indicating that 

SpsD targeted the 30 kDa NTD for binding. 

 

       Next, it was important to identify the region within SpsD responsible for binding 

fibronectin. Schwarz-Linek and others (18) demonstrated experimentally that certain 

sequences within the bacterial adhesins FnBPA (Staphylococcus aureus) and Sfb1 

(Streptococcus pyogenes) bind the fibronectin NTD using the extended tandem β-

zipper mechanism. There is a conserved E-D/E-T/S/Y motif in FnBPA for 2F1 and 

D/E-T/S motif for 4F1 interactions (18, 22, 29). Alignments between the S. 

pseudintermedius strain ED99 SpsD primary amino acid sequence and the NTD-

binding sequences from FnBPA and Sfb1 indicated the presence of a region of 

similarity stretching from residues 529-700 of SpsD, provisionally named the 

fibronectin-binding domain (FnBD; Figure 4A, blue bar; Figure 4B, blue). Within this 

domain lie two discreet regions of similarity:  residues 529-579 and residues 682-

700 (Figure 4A, grey bars). 
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Figure 3. Heterologous expression of SpsD on the surface of L. lactis confers 
attachment to the N-terminal portion. Full-length fibronectin and proteolytic 
fragments were immobilized and the ability of L. lactis expressing full-length SpsD 
to adhere to fibronectin was assessed using a crystal violet attachment assay. L. 
lactis containing the empty vector and immobilized BSA were included as negative 
controls. 
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Figure 4. The S. pseudintermedius strain ED99 FnBD, SpsD529-700. A. 
Compilation of ClustalW2 alignments between full-length SpsD and several 
fibronectin NTD-binding sequences from the S. aureus protein FnBPA and the S. 
pyogenes protein Sfb1. The FnBD is denoted by a blue bar, while the discreet 
regions of similarity (residues 529-579 and 682-700) are indicated by grey bars. An 
asterisk (*) indicates residues with full identity, a colon (:) indicates conservation of 
strongly similar residues, and a period (.) indicates conservation of weakly similar 
residues. B. Schematic of S. pseudintermedius strain ED99 SpsD including the 
FnBD (blue). 
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      Since it is known that the bacterial protein regions involved in the tandem beta-

zipper mechanism are intrinsically disordered, it was important to investigate the 

secondary structure of the FnBD. The sequence for S. pseudintermedius strain 

ED99 SpsD FnBD was submitted to the PHYRE2 protein fold recognition server, 

and the results indicate that it too is predicted to have an intrinsically-disordered 

secondary structure (Figure 5).       

 

      In order to confirm the presence and fibronectin-binding properties of the SpsD 

FnBD, traditional genetic cloning methods were used to generate pABspsD1585-

2100 (Figure 6). The recombinant GST fusion protein was expressed and purified 

(Figure 7A) and was found to bind preferentially to the fibronectin NTD by both 

ELISA (Figure 7B) and surface plasmon resonance (Figure 7C and 7D). An ELISA-

type assay demonstrated that the recombinant FnBD was able to bind to the three 

fibronectin fragments containing the NTD (A). Surface plasmon resonance 

demonstrated that the immobilized recombinant FnBD:fibronectin interaction was 

high affinity, particularly with the NTD (KD
app = 0.51nM). Surface plasmon resonance 

using Biacore also allows one to investigate the stoichiometry of interactions. The 

stoichiometry evaluation of the interaction suggested a 2:1 binding stoichiometry 

(data not shown). 
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Figure 5. The S. pseudintermedius strain ED99 SpsD FnBD is predicted to be 
intrinsically disordered. The primary amino acid sequence of the FnBD was 
submitted to the PHYRE2 server for secondary structure analysis.  
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Figure 6. pABspsD1585-2100. S. pseudintermedius strain ED99 FnBD (spsD1585-
2100) inserted into pGEX-5X-1. The plasmid contains a tac promoter, Factor Xa 
site, and AmpR gene. Created with SnapGene (www.snapgene.com).  
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Figure 7. The S pseudintermedius recombinant FnBD binds the fibronectin 
NTD with high affinity. A. 12% SDS-PAGE of purified recombinant FnBD, arrow 
marks ~55 kDa, and the predicted size of the GST fusion protein is 45.8 kDa. B. 
The ability of the recombinant FnBD to bind fibronectin was assessed using an 
ELISA-type assay. Fibronectin full-length and proteolytic digests were immobilized 
onto the plate and recombinant FnBD was added. The non-fibronectin-binding 
N2N3 region of the S. aureus adhesin FnBPB and coated BSA were used as 
negative controls. C. Surface plasmon resonance was used to assess the binding 
kinetics of the recombinant FnBD to full-length fibronectin and the fibronectin NTD 
(D) interactions. Recombinant FnBD was captured on the chip and fibronectin was 
flowed over the chip at increasing concentrations. 
  



www.manaraa.com

 23 

      To further investigate the specificity of the FnBD:fibronectin NTD binding, 

bacterial inhibition assays using full-length SpsD expressed on the surface of L. 

lactis were carried out. To determine whether the FnBD of SpsD and the NTD of 

fibronectin are necessary for this interaction, full-length fibronectin was immobilized 

on a polystrene plate. As the concentration of recombinant FnBD increased, the 

availability of binding sites for full-length SpsD on the surface of L. lactis was 

decreased, leading to a decrease in attachment (Figure 8A). The same effect was 

observed when the fibronectin NTD was used as an inhibitor (Figure 8B).  Taken 

together, these results indicate that the FnBD and the 30 kDa fibronectin NTD are 

region within each protein which are important for mediating their binding. 

 

      Within the FnBD two possible fibronectin binding regions were predicted based 

on primary amino acid sequence similarity to FnBPA and SfbI:  SpsD529-579 and 

SpsD682-700. To investigate this, two constructs were generated, each encompassing 

roughly one half of the FnBD (GST-SpsD529-615 and GST-SpsD616-700; Figure 9A), 

and were submitted to surface plasmon resonance analysis. Surface plasmon 

resonance is a powerful tool for investigating molecular interactions. The basic 

principle relies on the immobilization of one binding partner onto a chip and 

gathering data from their interaction. The results are displayed in a sensorgram, in 

which the upward curve describes association (on) and the downward curve, 

dissociation (off). The data are then fit using one of several binding models. A 

simple 1:1 binding may be described by the equation A + B       AB, in which ka1 

describes association and kd1 describes dissociation. A more complex model of 
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binding occurs when there is a conformational change upon binding. Such a binding 

may be described by the equation A + B      AB      ABx, where ka2 describes the 

tendency to form this conformation and kd2 describes the dissociation to form AB. 

The value for ka2/kd2, then, describes the tendency for the resulting product to 

undergo a conformational change during binding. The molar binding ration (N) 

indicates the stoichiometry of the equation. The results of surface plasmon 

resonance analysis of the SpsD constructs indicate that each half of the FnBD binds 

to fibronectin NTD with high affinity (KD
app = 0.17-0.84 nM) and thus contains a 

fibronectin NTD-binding site (Figure 9B; Table 2, N values).  

 

 

Table 2. The binding of SpsD recombinant constructs to fibronectin. 
Recombinant SpsD FnBD (blue), SpsD529-615 (green), and SpsD616-700 (red) bind the 
fibronectin NTD with high affinity (KD

app). Recombinant FnBD is predicted to bind 
fibronectin NTD with a stoichiometry of 2:1 (N = 1.87). As predicted, each half of the 
FnBD is able to bind to approximately one fibronectin NTD (N = 0.79, SpsD529-615; N 
= 1.32, SpsD616-700). 
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Figure 8. The SpsD fibronectin-binding domain or the 30 kDa fibronectin NTD 
inhibit binding of L. lactis expressing SpsD to fibronectin-coated surfaces. An 
adaptation of the crystal violet attachment assay was used to determine whether the 
FnBD:fibronectin interaction could be inhibited by either soluble recombinant FnBD 
or the 30 kDa fibronectin NTD. Full-length fibronectin was coated on the plate and 
increasing concentrations of recombinant FnBD (A) or the 30 kDa fibronectin NTD 
(B) were added to the coated fibronectin or L. lactis expressing full-length SpsD, 
respectively. L.lactis containing empty pKS80 vector, coated BSA, and recombinant 
GST were used as negative controls. 
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Figure 9. The S. pseudintermedius FnBD contains N- and C-terminal 
fibronectin-binding regions. A. Schematic of SpsD. Three GST fusion 
recombinant proteins were made:  FnBD (B, GST-SpsD529-700, blue), GST-SpsD529-

615 (C, green), and GST-SpsD616-700 (D, red). Binding kinetics of all three constructs 
were tested (purified protein for recombinant FnBD and bacterial lysates for GST-
SpsD529-615 and GST-SpsD616-700) using surface plasmon resonance and were 
shown to bind with high affinities using a two-step binding model in which a 
conformational change occurs upon binding (black lines; all y-axes in units of RU). 
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      Taken together, these results indicate the presence of a centrally-located 

fibronectin-binding domain within S pseudintermedius strain ED99 SpsD which 

binds the NTD of fibronectin with high affinity. The predicted intrinsically-disordered 

nature of the FnBD, along with the calculated stoichiometry of two NTDs bound per 

every one FnBD, suggest that the binding mechanism may be that of the tandem β-

zipper adopted by several other fibronectin NTD-targeting bacterial adhesins. 
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Chapter 3:  Discussion and Conclusion 
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      The results of this study indicate that full-length SpsD, a putative MSCRAMM of 

S. pseudintermedius, binds the extracellular matrix component fibronectin. Full-

length SpsD on the surface of L. lactis was found to confer attachment to human 

fibronectin N-terminal fragments containing the 30 kDa NTD (Figure 3). This result 

indicated that SpsD targets the NTD of fibronectin for binding. Efforts were then 

taken to determine the minimal binding region within SpsD responsible for this 

fibronectin interaction. SpsD’s primary amino acid similarity with other NTD-

targeting bacterial surface proteins suggested the presence of a centrally-located 

fibronectin-binding domain, FnBD. This FnBD was further predicted to contain two 

general areas of similarity, at the N- and a C-terminal ends. Also, like several other 

NTD-targeting adhesins, this central putative fibronectin-binding domain (FnBD) 

was predicted to be intrinsically disordered, suggesting that it may use the tandem 

β-zipper mechanism of binding. Subsequently, a recombinant GST fusion protein of 

the SpsD FnBD was generated and demonstrated to bind fragments of human 

fibronectin containing the 30 kDa NTD. This binding pattern was reproduced using 

surface plasmon resonance, and the binding was shown to be of high affinity, with a 

predicted stoichiometry of two NTDs for every FnBD. Further analysis into this 

interaction using inhibition assays demonstrated that both recombinant FnBD and 

the fibronectin NTD were able to reduce attachment of L. lactis expressing full-

length SpsD to immobilized full-length fibronectin, suggesting that the SpsD FnBD 

and the fibronectin NTD are the regions primarily responsible for mediating their 

interaction. The SpsD FnBD was predicted to contain two possible fibronectin NTD-

binding sites based on primary amino acid sequence similarity to other NTD-
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targeting bacterial adhesins, and surface plasmon resonance stoichiometry data 

concurred. Therefore, two GST-tagged recombinant constructs were generated, 

each encompassing approximately half of the FnBD. These constructs were 

submitted to surface plasmon resonance and the results demonstrated that each 

bound one fibronectin NTD molecule, confirming the 2:1 predicted stoichiometry. 

Taken together, this data indicates that SpsD targets the NTD of fibronectin by 

utilizing at least 2 high affinity ligand-binding sites within its FnBD. These 

conclusions add to the knowledge of how S. pseudintermedius may colonize the 

host, but also raises a number of questions that may warrant initiation of several 

areas of focus.  

 

      S. pseudintermedius is a pathogen which exhibits species specificity. 

Experiments with SpsD expressed on the surface of L. lactis have shown that SpsD 

attaches to canine, bovine, human, equine, and avian fibrinogen (12). Although the 

experiments presented here were completed with human fibronectin, it is likely that 

comparable results would be observed with canine fibronectin, given the fact that 

SpsD appears to attach equally well to human and dog fibrinogen at a concentration 

of 40 µg/mL (12), and that an alignment between human and canine fibronectin 

NTD sequences demonstrated that the sequences differ in only one residue 

(ClustalW2 alignment, data not shown; P83 canine and S93 human fibronectin 

sequences, located in the region between the 1F1 and 2F1 modules).  
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      Heterologous expression is allows one to tease out contributions attributable to 

individual proteins by expressing them alone on the surface of an unrelated host. 

Heterologous expression studies also allow one to observe redundancies in 

naturally-occurring proteins. Although these studies are artificial, they do provide 

important information regarding characteristics of individual proteins. For example, 

Mulcahy and others (30) demonstrated that the S. aureus MSCRAMM ClfB was 

able to confer attachment of L. lactis expressing ClfB to the nares of mice, thereby 

demonstrating its role in nasal colonization. These data may have been difficult to 

obtain without the use of ClfB L. lactis heterologous expression since S. aureus is 

known to express many surface adhesins, complicating the assessment of the roles 

of individual adhesins. Therefore, heterologous expression was used to evaluate 

various SpsD mutants and ligand-binding domains to better identify portions 

involved in contributing to pathogenesis. Results of experiments using SpsD 

heterologously expressed on the surface of L. lactis demonstrated that SpsD targets 

the fibronectin NTD and that this interaction may be inhibited by using both 

recombinant FnBD and fibronectin NTD assays.  

 

      Biofilm formation is another common virulence strategy used by bacterial 

pathogens. S. pseudintermedius biofilm formation is documented and of particular 

clinical interest due to its involvement in surgical site infections (31, 32). Though 

frequently observed, S. pseudintermedius biofilms are incompletely characterized 

and no definitive preventive or treatment has been identified. Singh and others (33) 

found that 96% of S. pseudintermedius clinical strains from dogs (121 methicillin-
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resistant and 19 methicillin-sensitive) were either strong or moderate biofilm 

producers. DiCicco and others (31) found clarithromycin to be ineffective at 

eradicating S. pseudintermedius biofilms. Promisingly, Turk and others (32) and 

Song and others (34) have found DispersinB and manuka essential oil, respectively, 

to be promising biofilm treatments. The roles of SpsD and other S. 

pseudintermedius adhesins and surface proteins in biofilms could be examined 

using mutant strains deficient or defective for SpsD and other proteins. 

 

      S. aureus has been shown to induce invasion of endothelial cells through the 

use of a fibronectin bridge mediated by fibronectin binding proteins (22, 35) in which 

fibronectin’s interaction with β1 integrins facilitated non-phagocytic cell uptake (19, 

35). This is advantageous for pathogens, providing access to an intracellular niche 

useful for escape from the immune system. There are currently no reports of 

intracellular S. pseudintermedius, so an important question to investigate would be 

to determine whether SpsD and/or other putative S. pseudintermedius MSCRAMMs 

mediate endothelial and/or other cell internalization. Data described here indicates 

that S. pseudintermedius could use a fibronectin bridge for invasion.  

 

      A definitive binding mechanism for SpsD and fibronectin has yet to be described 

completely. Data here indicate that a tandem β-zipper mechanism of binding 

between the SpsD FnBD and fibronectin NTD is likely, but more experiments are 

needed before this can be confirmed. Circular dichroism, useful for determining 

secondary structure, could be used on His-tagged FnBD protein and related 
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fragments, and these constructs could also be subjected to NMR or co-

crystallization for both secondary structure determination and binding 

characterization in the presence of fibronectin NTD. Structural and binding 

information gleaned from these types of assays are the gold-standard for 

determining amino acid residue contacts and configurations. 

 

       Studies using animal models may provide information about SpsD 

immunogenicity. Delayed-type hypersensitivity assays provide information about T 

cell responses, and immunoglobulin analysis (by ELISA, for example) gives one a 

picture of B cell responses. Another useful metric that can be examined using 

animal models is pathogenicity. Investigations into most effective dose and route for 

reproducing the natural disease, as well as infectious (ID50) and lethal (LD50) doses, 

may also be performed. The use of animal models for investigating bacterial surface 

adhesins like SpsD is aided greatly by the fact that L. lactis may be introduced 

without harm to the host at the correct dose. The allows one to heterologously 

express a protein or protein fragment of interest on the surface of L. lactis for use in 

models to examine colonization and infection. The Fitzgerald laboratory (The 

University of Edinburgh, UK) has generated a strain of S. pseudintermedius ED99 

defective for spsD. This strain would be useful in functional assays, cell attachment 

assays, and animal models. Although S. pseudintermedius is primarily a canine 

pathogen, it has been shown to bind to ECM proteins from several species. Since 

mouse models are typically used for animal studies, the differences between mouse 

and dog/human fibronectin need to be explored and the ability of SpsD and other 
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putative S. pseudintermedius MSCRAMMs to bind to mouse ECM proteins needs to 

be confirmed. The use of animal models would also allow for the determination of 

the vaccine potential of SpsD or any of its components. The proof of concept for 

investigating SpsD and other S. pseudintermedius adhesins for inclusion in 

vaccines comes from the successful use of S. aureus ClfB administered 

systemically or intranasally in reducing colonization and the ability of α-ClfB 

monoclonal antibody to reduce nasal colonization (36). 

 

      As S. pseudintermedius emerges as an important player in the veterninary 

arena, an important focus will continue to be broadly identifying and characterizing 

all putative S. pseudintermedius MSCRAMMs to understand how this opportunistic 

pathogen interacts with its hosts. It will be important to determine the domain 

organization of these proteins, which will allow for the investigation of the roles 

different domains play, and for the comparison and contrasting of putative S. 

pseudintermedius MSCRAMMs with other known bacterial proteins. Chimeric 

proteins may then be made in which regions of interest are switched in and out, 

making custom proteins to test the properties of specific regions of S. 

pseudintermedius. 

 

      S. pseudintermedius strain ED99 SpsD also appears to encode an interesting 

repeat region, comprised of a series of five nearly identical repeated sequences 

bracketed by a conserved PQP motif (Figure 10). This is noteworthy, because the 

PQP tripeptide is known to be recognized by specific antibodies and to be present 
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in bacterial proteins, B. parapertussis pertactin, for example (37, 38). Pertactin is 

thought to function as an adhesin and immunogen. Beyond the scope of this 

research, S. pseudintermedius strain ED99 SpsL also appears to contain interesting 

repeats. Rather than a PQP tripeptide, SpsL repeats are punctuated by QGPQ 

regions. These are of interest because a Basic Local Alignment Search Tool 

(BLAST) search for QGPQ returns result including:  Vpr protein of HIV I, Envelope 2 

protein of Hepatitis C, Glutenin, and the T-cell receptor V beta chain. 
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Figure 10. Schematic of S. pseudintermedius strain ED99 SpsD including 
proposed repeats. The repeat region ranges from residue 849 to 956 and includes 
five repeated sequences (orange) and six PQP tripeptides (purple).   
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      This study has identified a central fibronectin-binding domain within an S. 

pseudintermedius surface adhesin which may be used for colonization and/or 

invasion via the host protein fibronectin. Discoveries of this kind are vital for the 

development of therapeutics such as vaccines, small molecule inhibitors, and other 

treatments. This study provides important insights into a surface protein of an 

important and ubiquitous worldwide veterinary pathogen. 
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